Monday, October 12, 2015

p. 494: 1, 3, 4, 5, 6, 7

Problem 1

Problem. Find the center of mass of the point masses $m_{1}=7, m_{2}=3$, and $m_{3}=5$ lying at $x_{1}=-5, x_{2}=0$, and $x_{3}=3$, respectively, on the x-axis.

Solution. The numerator is

$$
\begin{aligned}
m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3} & =-35+0+15 \\
& =-20
\end{aligned}
$$

The denominator is

$$
\begin{aligned}
m_{1}+m_{2}+m_{3} & =7+3+5 \\
& =15 .
\end{aligned}
$$

The center of mass is

$$
\begin{aligned}
\bar{x} & =\frac{-20}{15} \\
& =-\frac{4}{3} .
\end{aligned}
$$

Problem 3

Problem. Find the center of mass of the point masses $m_{1}=1, m_{2}=3, m_{3}=2$, $m_{4}=9$, and $m_{5}=5$ lying at $x_{1}=6, x_{2}=10, x_{3}=3, x_{4}=2$, and $x_{5}=4$, respectively, on the x-axis.

Solution. The numerator is

$$
\begin{aligned}
m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+m_{4} x_{4}+m_{5} x_{5} & =6+30+6+18+20 \\
& =80 .
\end{aligned}
$$

The denominator is

$$
\begin{aligned}
m_{1}+m_{2}+m_{3}+m_{4}+m_{5} & =1+3+2+9+5 \\
& =20 .
\end{aligned}
$$

The center of mass is

$$
\begin{aligned}
\bar{x} & =\frac{80}{20} \\
& =4 .
\end{aligned}
$$

Problem 4

Problem. Find the center of mass of the point masses $m_{1}=8, m_{2}=5, m_{3}=5$, $m_{4}=12$, and $m_{5}=2$ lying at $x_{1}=-2, x_{2}=6, x_{3}=0, x_{4}=3$, and $x_{5}=-5$, respectively, on the x-axis.

Solution. The numerator is

$$
\begin{aligned}
m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+m_{4} x_{4}+m_{5} x_{5} & =-16+30+0+36-10 \\
& =40 .
\end{aligned}
$$

The denominator is

$$
\begin{aligned}
m_{1}+m_{2}+m_{3}+m_{4}+m_{5} & =8+5+5+12+2 \\
& =32
\end{aligned}
$$

The center of mass is

$$
\begin{aligned}
\bar{x} & =\frac{-40}{32} \\
& =\frac{5}{4} .
\end{aligned}
$$

Problem 5

Problem. (a) Translate each point mass in Exercise 3 to the right four units and determine the resulting center of mass.
(b) Translate each point mass in Exercise 4 to the left two units and determine the resulting center of mass.
Solution. (a) The new positions are $x_{1}=10, x_{2}=14, x_{3}=7, x_{4}=6$, and $x_{5}=8$. The numerator is

$$
\begin{aligned}
m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+m_{4} x_{4}+m_{5} x_{5} & =10+42+14+54+40 \\
& =160 .
\end{aligned}
$$

The denominator is still

$$
\begin{aligned}
m_{1}+m_{2}+m_{3}+m_{4}+m_{5} & =1+3+2+9+5 \\
& =20
\end{aligned}
$$

The center of mass is

$$
\begin{aligned}
\bar{x} & =\frac{160}{20} \\
& =8 .
\end{aligned}
$$

(b) The new positions are $x_{1}=-4, x_{2}=4, x_{3}=-2, x_{4}=1$, and $x_{5}=-7$. The numerator is

$$
\begin{aligned}
m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+m_{4} x_{4}+m_{5} x_{5} & =-32+20-10+12-14 \\
& =-24 .
\end{aligned}
$$

The denominator is

$$
\begin{aligned}
m_{1}+m_{2}+m_{3}+m_{4}+m_{5} & =8+5+5+12+2 \\
& =32
\end{aligned}
$$

The center of mass is

$$
\begin{aligned}
\bar{x} & =\frac{-24}{32} \\
& =-\frac{3}{4} .
\end{aligned}
$$

Problem 6

Problem. Use the result of Exercise 5 to make a conjecture about the change in the center of mass that results when each point mass is translated k units horizontally. Solution. The new center of mass will be at $\bar{x}+k$.

Problem 7

Problem. Consider a beam of length 10 with a fulcrum x feet from on end. There are two children with weights 48 and 72 , respectively, placed on opposite ends of the beam. Find x such that the system is in equilibrium.

Solution. We find $48+72=120$, so the $48-\mathrm{lb}$ child should be $\frac{72}{120}$, or $\frac{3}{5}$ of the way from x and the $72-\mathrm{lb}$ child should be $\frac{48}{120}$, or $\frac{2}{5}$ from x, so that the products $48 \times \frac{72}{120}$ and $72 \times \frac{48}{120}$ will be equal.

Since the board is 10 feet long, the fulcrum should be placed 4 feet from the heavier child and 6 feet from the lighter child.

